5 research outputs found

    Design of Digital Frequency Synthesizer for 5G SDR Systems

    Get PDF
    The previous frequency synthesizer techniques for scalable SDR are not compatible with high end applications due to its complex computations and the intolerance over increased path interference rate which leads to an unsatisfied performance with improved user rate in real time environment. Designing an efficient frequency synthesizer framework in the SDR system is essential for 5G wireless communication systems with improved Quality of service (QoS). Consequently, this research has been performed based on the merits of fully digitalized frequency synthesizer and its explosion in wide range of frequency band generations. In this paper hardware optimized reconfigurable digital base band processing and frequency synthesizer model is proposed without making any design complexity trade-off to deal with the multiple standards. Here fully digitalized frequency synthesizer is introduced using simplified delay units to reduce the design complexity. Experimental results and comparative analyzes are carried out to validate the performance metrics and exhaustive test bench simulation is also carried out to verify the functionality

    Comparison of Elastic and Plastic Reference Volume Approaches

    No full text
    For finding out reliable limit load multipliers in pressure vessel components or structures using simplified limit load methods, proper estimation of reference volume is important. In this paper, two empirical methods namely elastic reference volume method (ERVM) and plastic reference volume method (PRVM) for reference volume correction are presented and compared. These reference volume correction concepts are used in combination with m a -tangent method and elastic modulus adjustment procedure to achieve converged limit load multiplier solution. These multipliers are compared with nonlinear finite element analysis results and are found to be lower bounded. Elastic reference volume method is the simplest method for reference volume correction when compared to plastic reference volume method

    Climate-smart tank irrigation: A multi-year analysis of improved conjunctive water use under high rainfall variability

    No full text
    Although water harvesting is receiving renewed attention as a strategy to cope with increasing seasonal and inter-annual rainfall variability, many centuries-old local water-harvesting reservoirs (tanks) in India are rapidly deteriorating. Easy access to groundwater is seen as one of the major threats to their maintenance and functioning. Potentially, however, conjunctive use of water from rain, tanks and groundwater reserves, supported by proper monitoring, could improve the resilience and productivity of traditional tank irrigation systems. To date, few quantitative multi-annual analyses of such climate-smart systems have been published. To redress this, we assess the sustainability of a rehabilitated tank irrigation system, by monitoring all inputs and outputs over a period of six years (12 cropping seasons). Our results show that during the period considered, improved conjunctive use resulted in a more stable cropping intensity, increased economic water productivity and higher net agricultural income. Groundwater tables were not negatively affected. We argue that improved conjunctive use can considerably reduce the vulnerability of tank irrigation to rainfall variability and thus is a valuable strategy in light of future climate change
    corecore